首页/ 产品解读 / 新闻详情

动物实验系列产品选购指南

人类疾病的发展十分复杂,以人本身作为实验对象来深入探讨疾病发生机制,推动医药学的发展来之缓慢,借助于动物模型的间接研究,可以有意识地改变那些在自然条件下不可能或不易排除的因素,以便更准确地观察模型的实验结果并与人类疾病进行比较研究,有助于更方便、更有效地认识人类疾病的发生发展规律,研究防治措施。

 

 
选择指南
 

模型名称

建模产品

溶解试剂

模型验证

建模方法

溃疡性结肠炎

DSS(Cat# 60316ES)

蒸馏水

H&E染色(Cat# 60524ES)

点击详情

尿粪隐血检测(Cat# 60403ES)

AB-PAS染色液(Cat# 60534ES)

5-ASA(Cat# 60317ES)

柳氮磺吡啶(Cat# 60320ES)

5-氟尿嘧啶(Cat# 51412ES)

急性肝损伤

TAA(Cat# 60395ES)

氯化钠(Cat# 60372ES)

H&E染色(Cat# 60524ES)

点击详情

Masson染色(Cat# 60532ES)

溶血性贫血

APH(Cat# 60396ES)

氯化钠(Cat# 60372ES)

H&E染色(Cat# 60524ES)

点击详情

胰腺炎

牛磺胆酸钠(Cat# 60398ES)

氯化钠(Cat# 60372ES)

H&E染色(Cat# 60524ES)

点击详情

雨蛙素(Cat# 60321ES)

点击详情

L-精氨酸(Cat# 61302ES)

点击详情

糖尿病

STZ(Cat# 60256ES)

柠檬酸一水(Cat# 60347ES)

H&E染色(Cat# 60524ES)

点击详情

柠檬酸三钠二水(Cat# 60348ES)

阿脲 一水合物(Cat# 60331ES)

氯化钠(Cat# 60372ES)

H&E染色(Cat# 60524ES)

点击详情

帕金森

鱼藤酮(Cat# 60393ES)-粉末

DMSO(Cat# 60313ES)

/

点击详情

鱼藤酮(Cat# 60394ES)-溶液

氯化钠(Cat# 60372ES)

MPTP(Cat# 60388ES)-粉末

氯化钠(Cat# 60372ES)

/

点击详情

MPTP(Cat# 60387ES)-溶液

口腔癌

4-NQO(Cat# 60392ES)

蒸馏水

H&E染色(Cat# 60524ES)

点击详情

胃癌

MNNG(Cat# 60397ES)

DMSO(Cat# 60313ES)

H&E染色(Cat# 60524ES)

点击详情

 

 
客户案例
 

1.DSS(Cat# 60316ES)——含硫量16-20%,游离硫<0.2%,模拟人UC模型,安全高效

 

图1.结肠炎H&E染色结果

 

客户1:

客户来源:南京农业大学

动物类型:C57BL/6小鼠

造模方法:3% (w/v) DSS自由饮用7天

引用自:doi.org/10.1016/j.jnutbio.2020.108438

 

图2.结肠癌H&E染色结果

客户2:

客户来源:暨南大学

动物类型:BALB/c小鼠

造模方法:

1. 10 mg/kg AOM处理小鼠后用纯水自由饮1周;

2. 2.5%(w/v)DSS自由饮用1周,换纯水自由饮用2周

3. 步骤2重复3次。

引用自:doi: 10.3389/fphar.2020.586885

 

 

2.雨蛙素(Cat# 60321ES)——十肽分子形式,纯度(HPLC)≥97%

 图3.胰腺H&E染色结果

客户3:

客户来源:上海交通大学医学院

实验动物:Balb/c小鼠

造模方法:以1小时间隔腹腔注射7次50 μg/kg雨蛙素,并在最后一次同时注LPS (10 mg/kg)诱导SAP。

引用自:doi.org/10.1016/j. ebiom.2022.103959

 

 

3.STZ(Cat# 60256ES)——链脲佐菌素,纯度(HPLC)≥98%

 图4.各器官H&E染色结果

客户4:

客户来源:华中科技大学同济医学院

引用自:DOI: 10.1021/acsami.1c24569

 

 
客户文献
 

滑动查看

[1] Li Zhao, Fei Wang,Zhengwei Cai,et al.Improving drug utilization platform with injectable mucoadhesive hydrogel for treating ulcerative colitis[J].chemical engineering journal.424(2021)130464.IF=16.744

[2] Lingjun Tong, Haining Hao, Zhe Zhang,et al.Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota[J].Theranostics.2021; 11(17): 8570-8586 IF=11.556

[3] Li, Y., Dong, J., Xiao, H., Zhang, S., Wang, B., Cui, M., & Fan, S. Gut commensal derived-valeric acid protects against radiation injuries. Gut Microbes,.2020 .1–18.IF=10.245

[4] Jingjing Gan, Yuxiao Liu, Lingyu Sun,et al.Orally administrated nucleotide-delivery particles from microfluidics for inflammatory bowel disease treatment[J].Applied Materials Today.2021 Dec;25:101231 IF=10.041

[5] Mengmeng Xu, Ying Kong, Nannan Chen,et al.Identification of Immune-Related Gene Signature and Prediction of CeRNA Network in Active Ulcerative Colitis[J].Frontiers in Immunology.2022; 13: 855645. IF=7.561

[6] JialiDong,YuanLi,HuiwenXiao,et al.Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models[J].Cell reports.2021, 109886.IF=9.423

[7] Hao H,  Zhang X,  Tong L,  Liu Q,et al.Lactobacillus plantarumEffect of Extracellular Vesicles Derived From  Q7 on Gut Microbiota and Ulcerative Colitis in Mice[J].Frontiers in Immunology.2021.777147 .IF=7.561

[8] Yaohua Fan,Yanqun Fan,Kunfeng Liu,et al.Edible Bird’s Nest Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in C57BL/6J Mice by Restoring the Th17/Treg Cell Balance[J].Frontiers in Pharmacology.2021.632602.IF=7.561

[9] Jia-Rong Huang, Sheng-Te Wang, Meng-Ning Wei,et al.Piperlongumine Alleviates Mouse Colitis and Colitis-Associated Colorectal Cancer[J].Frontiers in Pharmacology.2020.586885. IF=7.561

[10] Gao X, Fan W, Tan L, et al. Soy isoflavones ameliorate experimental colitis by targeting ERα/NLRP3 inflammasome pathways[J]. The Journal of Nutritional Biochemistry, 2020, 83.IF=6.048

[11] Lujuan Xing, Lijuan Fu, Songmin Cao,et al.The Anti-Inflammatory Effect of Bovine Bone-Gelatin-Derived Peptides in LPS-Induced RAW264.7 Macrophages Cells and Dextran Sulfate Sodium-Induced C57BL/6 Mice[J]. Nutrients 2022, 14, 1479. IF=5.717

[12] Wang S,  Huang J,  Tan KS, et al.Isosteviol Sodium Ameliorates Dextran Sodium Sulfate-Induced Chronic Colitis through the Regulation of Metabolic Profiling, Macrophage Polarization, and NF-B Pathway[J].Oxidative Medicine and Cellular Longevity. 2022,4636618. IF=5.076

[13] Xi Z, Ahmad E, Zhang W, et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. J Control Release. 2022;342:1-13. doi:10.1016/j.jconrel.2021.11.045(IF:9.776)
[14] Xu Z, Liu Y, Ma R, et al. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS Appl Mater Interfaces. 2022;14(12):14059-14071. doi:10.1021/acsami.1c24569(IF:9.229)
[15] Wu M, Huang J, Shi J, Shi L, Zeng Q, Wang H. Ruyi Jinhuang Powder accelerated diabetic ulcer wound healing by regulating Wnt/β-catenin signaling pathway of fibroblasts In Vivo and In Vitro. J Ethnopharmacol. 2022;293:115321. doi:10.1016/j.jep.2022.115321(IF:4.360)
[16] Zhang Y, Zhang Y, Halemahebai G, Tian L, Dong H, Aisker G. Urolithin A, a pomegranate metabolite, protects pancreatic β cells from apoptosis by activating autophagy. J Ethnopharmacol. 2021;272:113628. doi:10.1016/j.jep.2020.113628(IF:3.690)
[17] Wang M, Yang F, Yan X, et al. Anti-diabetic effect of banana peel dietary fibers on type 2 diabetic mellitus mice induced by streptozotocin and high-sugar and high-fat diet [published online ahead of print, 2022 Jun 29]. J Food Biochem. 2022;e14275. doi:10.1111/jfbc.14275(IF:2.720)
[18] Liang H, Pan Y, Teng Y, et al. A proteoglycan extract from Ganoderma Lucidum protects pancreatic beta-cells against STZ-induced apoptosis. Biosci Biotechnol Biochem. 2020;84(12):2491-2498. doi:10.1080/09168451.2020.1805718(IF:2.043)

[19] He R, Shi J, Xu D, et al. SULF2 enhances GDF15-SMAD axis to facilitate the initiation and progression of pancreatic cancer. Cancer Lett. 2022;538:215693. doi:10.1016/j.canlet.2022.215693(IF:8.679)
[20] Zhang L, Shi J, Du D, et al. Ketogenesis acts as an endogenous protective programme to restrain inflammatory macrophage activation during acute pancreatitis. EBioMedicine. 2022;78:103959. doi:10.1016/j.ebiom.2022.103959(IF:8.143)
[21] Yang X, Li R, Xu L, Qian F, Sun L. Serum amyloid A3 is required for caerulein-induced acute pancreatitis through induction of RIP3-dependent necroptosis. Immunol Cell Biol. 2021;99(1):34-48. doi:10.1111/imcb.12382(IF:5.126)
[22] Li X, Ye C, Mulati M, Sun L, Qian F. Ellipticine blocks synergistic effects of IL-17A and TNF-α in epithelial cells and alleviates severe acute pancreatitis-associated acute lung injury. Biochem Pharmacol. 2020;177:113992. doi:10.1016/j.bcp.2020.113992(IF:4.960)
[23] Xiao J, Feng X, Huang XY, et al. Spautin-1 Ameliorates Acute Pancreatitis via Inhibiting Impaired Autophagy and Alleviating Calcium Overload. Mol Med. 2016;22:643-652. doi:10.2119/molmed.2016.00034(IF:3.530)
[24] Fan HN, Chen W, Fan LN, Wu JT, Zhu JS, Zhang J. Macrophages-derived p38α promotes the experimental severe acute pancreatitis by regulating inflammation and autophagy. Int Immunopharmacol. 2019;77:105940. doi:10.1016/j.intimp.2019.105940(IF:3.361)
[25] Pu WL, Bai RY, Zhou K, et al. Baicalein attenuates pancreatic inflammatory injury through regulating MAPK, STAT 3 and NF-κB activation. Int Immunopharmacol. 2019;72:204-210. doi:10.1016/j.intimp.2019.04.018(IF:3.361)

400-6111-883