iFluor™ 488 phalloidin iFluor™ 488标记鬼笔环肽(绿色)
产品货号
产品规格
是否有现货
价格
下单数量
操作
40736ES75
300T
现货
¥ 1858.00
¥ 2126.00
加入购物车
产品详情
FAQ
产品文档
已发表文献
相关应用
相关产品
产品详情
产品介绍

鬼笔环肽(Phalloidin)是一种来源于毒蕈类鬼笔鹅膏(Amanita phalloides)的环状七肽毒素,以高亲和力(Kd= 20 nM)选择性结合于丝状肌动蛋白F-actin,而不会与单体肌动蛋白G-actin结合,通常用来标记组织切片、细胞培养物或无细胞体系中的F-actin,从而对F-actin进行定性和定量分析。另外,鬼笔环肽衍生物也以相近的亲和力结合于大小纤维,无论是动植物来源的肌肉细胞或非肌肉细胞,按照每一个肌动蛋白亚基约与一个鬼笔环肽分子的计量比结合。且非特异性结合几乎可忽略,染色区域和非染色区域辨识度非常明显。因此,鬼笔环肽衍生物特别适合替代肌动蛋白(Actin)抗体进行相关研究。另外鬼笔环肽衍生物很小,直径约12-15Å,分子量<2000 Daltons,未标记肌动蛋白(Actin)的许多生理特性都得以维持,比如,同肌动蛋白结合蛋白如肌球蛋白,原肌球蛋白,DNase I等仍能发生反应;鬼笔环肽标记的纤维丝仍可穿透固相肌球蛋白基质;以及甘油抽提的肌纤维标记后仍可收缩等。

鬼笔环肽(Phalloidin)的结合阻止丝状肌动蛋白(微丝)的解离,稳定微丝结构,从而破坏微丝的聚合-去聚合的动态平衡。此特性使得肌动蛋白聚合发生的临界浓度(CC)降至<1 µg/mL,因此,可用作一种聚合促进剂。此外,鬼笔环肽还可抑制F-actin的ATP水解活性。

本品为iFluorTM 488标记的鬼笔环肽,可发出高亮度、光稳定的绿色荧光,染色反应特异性强,对比性高,具有比Actin抗体更好的染色效果,适合用作F-actin的定性和定量检测。iFluorTM 488 鬼笔环肽染色与用于细胞分析的其他荧光染色完全兼容,包括荧光蛋白、Qdot® 纳米晶体和其他iFluorTM偶联物(包含iFluorTM偶联二抗)。另外,经本品结合后的F-actin仍能维持actin自身具有的许多生物学特性。且本品的结合没有物种差异性,适用性广泛。

本品以1 mg/mL的浓度提供。

产品特色
分子量(Molecular Weight)~1900
最大激发/发射波长(Ex/Em)493/517 nm
溶解性(Solubility)溶于DMSO
结构式(Structure)


存储条件

冰袋运输。收到货后-20℃避光干燥保存,1年有效。

FAQ

Q:40736ES 这个染料可以染活细胞么?我看说明只写了固定染色?

A:不能。

Q:可以同时孵育靶蛋白一抗吗?

A:可以先孵育一抗二抗。再染色鬼笔环肽。

Q: 40736 300T规格有多少ul ?

A: 1ml染色10个孔。装量是30ul。

产品文档
COA
已发表文献

[1] Wang C, Tu J, Zhang S, et al. Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nat Commun. 2020;11(1):1531. Published 2020 Mar 24. doi:10.1038/s41467-020-15270-4(IF:12.121)

[2] Chao F, Song Z, Wang S, et al. Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clin Transl Med. 2021;11(3):e360. doi:10.1002/ctm2.360(IF:11.492)

[3] Cao H, Zhou Q, Liu C, et al. Substrate stiffness regulates differentiation of induced pluripotent stem cells into heart valve endothelial cells. Acta Biomater. 2022;143:115-126. doi:10.1016/j.actbio.2022.02.032(IF:8.947)

[4] Xie H, Zhang C, Liu D, et al. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia. 2021;64(1):211-225. doi:10.1007/s00125-020-05299-x(IF:7.518)

[5] Wang L, Lv H, Liu L, et al. Electrospun nanofiber-reinforced three-dimensional chitosan matrices: Architectural, mechanical and biological properties [published correction appears in J Colloid Interface Sci. 2022 Aug 15;620:486]. J Colloid Interface Sci. 2020;565:416-425. doi:10.1016/j.jcis.2020.01.016(IF:7.489)

[6] Liu J, Li T, Zhang H, et al. Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Mater Today Bio. 2022;14:100243. Published 2022 Mar 24. doi:10.1016/j.mtbio.2022.100243(IF:7.348)

[7] Qiu Y, Xu K, Xie L, Chen S, Sun Y. The Reduction in Microtubule Arrays Caused by the Dysplasia of the Non-Centrosomal Microtubule-Organizing Center Leads to a Malformed Organ of Corti in the Cx26-Null Mouse. Biomedicines. 2022;10(6):1364. Published 2022 Jun 9. doi:10.3390/biomedicines10061364(IF:6.081)

[8] Liu XZ, Jin Y, Chen S, et al. F-Actin Dysplasia Involved in Organ of Corti Deformity in Gjb2 Knockdown Mouse Model. Front Mol Neurosci. 2022;14:808553. Published 2022 Mar 7. doi:10.3389/fnmol.2021.808553(IF:5.639)

[9] Chang T, Yin H, Yu X, et al. 3D PCL/collagen nanofibrous medical dressing for one-time treatment of diabetic foot ulcers. Colloids Surf B Biointerfaces. 2022;214:112480. doi:10.1016/j.colsurfb.2022.112480(IF:5.268)

[10] Sun M, Chen S, Ling P, Ma J, Wu S. Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application. Nanomaterials (Basel). 2021;12(1):6. Published 2021 Dec 21. doi:10.3390/nano12010006(IF:5.076)

[11] Gai C, Yu M, Li Z, et al. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer. J Cell Physiol. 2020;235(4):3329-3339. doi:10.1002/jcp.29221(IF:4.522)

[12] Zhao Z, Chua HM, Goh BHR, et al. Anisotropic hair keratin-dopamine composite scaffolds exhibit strain-stiffening properties. J Biomed Mater Res A. 2022;110(1):92-104. doi:10.1002/jbm.a.37268(IF:4.396)

[13] Guan X, Yuan Y, Wang G, et al. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol. 2020;83:106449. doi:10.1016/j.intimp.2020.106449(IF:3.943)

[14] Lu D, Zeng Z, Geng Z, et al. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes forin vitroandin vivoevaluation of vascularization. Biomed Mater. 2022;17(2):10.1088/1748-605X/ac494b. Published 2022 Jan 25. doi:10.1088/1748-605X/ac494b(IF:3.715)

[15] Zhang S, Wang C, Lu J, et al. In-Cell NMR Study of Tau and MARK2 Phosphorylated Tau. Int J Mol Sci. 2018;20(1):90. Published 2018 Dec 26. doi:10.3390/ijms20010090(IF:3.687)

[16] Sun F, Zhang J, Chen L, et al. Epac1 Signaling Pathway Mediates the Damage and Apoptosis of Inner Ear Hair Cells after Noise Exposure in a Rat Model. Neuroscience. 2021;465:116-127. doi:10.1016/j.neuroscience.2021.03.032(IF:3.590)

[17] Zhao Z, Moay ZK, Lai HY, et al. Characterization of Anisotropic Human Hair Keratin Scaffolds Fabricated via Directed Ice Templating. Macromol Biosci. 2021;21(2):e2000314. doi:10.1002/mabi.202000314(IF:3.416)

[18] Wu F, Wen Z, Zhi Z, et al. MPGES-1 derived PGE2 inhibits cell migration by regulating ARP2/3 in the pathogenesis of Hirschsprung disease. J Pediatr Surg. 2019;54(10):2032-2037. doi:10.1016/j.jpedsurg.2019.01.001(IF:2.092)

购物车
客服
电话
咨询